Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).
The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.
The only line of the output will contain S modulo 9901.
23=8.
The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
15 modulo 9901 is 15 (that should be output).
Romania OI 2002
Sumdiv
刚一看到这个题,一股浓浓的数论感就扑面而来,求ABAB的约数和,暴力当然是不可取的,我们不妨换个角度
如果我们把AA分解质因数,表示为
ParseError: KaTeX parse error: Double subscript at position 14: A=p_1^(c_1)_p_̲2^(c_2)_p_3^(c_…
那么AB可表示为
ParseError: KaTeX parse error: Double subscript at position 12: A=p_1^{(B_c_̲1)}_p_2^{(B_c_2…
则AB所有约数和为
ParseError: KaTeX parse error: Double subscript at position 26: …^2+...+p_1^(B_c_̲1))_
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
|
#include<iostream> #include<cstdio> #include<cmath> using namespace std; #define MAXN 50001 const int MOD=9901; long long a,b; long long p[MAXN],c[MAXN]; long long m; long long ans; long long pow(long long p,long long n){ long long sq=1; while(n){ if(n&1)sq=(sq*p)%MOD; n>>=1; p=(p*p)%MOD; } return sq; } bool prime(int n){ if(n<2)return 0; for(int i=2;i<=sqrt(n);i++){ if(n%i==0)return 0; } return 1; } void divide(int n){ m=0; for(int i=2;i<=sqrt(n);i++){ if(n%i==0&&prime(i)){ p[++m]=i,c[m]=0; while(n%i==0)n/=i,c[m]++; } } if(n>1&&prime(n))p[++m]=n,c[m]=1; return; } long long sum(long long p,long long c){ if(c==0)return 1; if(c%2==0)return (sum(p,c/2-1)*(1+pow(p,c/2+1))+pow(p,c/2))%MOD; else return (sum(p,c/2)*(1+pow(p,c/2+1)))%MOD; } void work(){ ans=1; for(int i=1;i<=m;i++){ ans=(ans*sum(p[i],c[i]*b)%MOD)%MOD; } } int main(){ cin>>a>>b; divide(a); work(); printf("%lld",ans); return 0; } |