[洛谷P1771] 方程的解

题目

题目描述

佳佳碰到了一个难题,请你来帮忙解决。

对于不定方程a1+a2+…+ak-1+ak=g(x),其中k≥2且k∈N,x是正整数,g(x)=x^x mod 1000(即x^x除以1000的余数),x,k是给定的数。我们要求的是这个不定方程的正整数解组数。

举例来说,当k=3,x=2时,分别为(a1,a2,a3)=(2,1,1)'(1,2,1),(1,1,2)。

输入格式

输入文件equation.in有且只有一行,为用空格隔开的两个正整数,依次为k,x。

输出格式

输出文件equation.out有且只有一行,为方程的正整数解组数。

输入样例

输出样例

说明

对于40%的数据,ans≤10^16;对于100%的数据,k≤100,x≤2^31-1,k≤g(x)。

题解

首先呢,\(g(x)\)我们是可以求解的,我们设\(n=g(x)\)
我们可以先写出\(n\)个1,我们发现它们之间有\(n-1\)个空隙,而我们的任务是寻找k个数,使k个数的和等于\(n\),于是我们就可以将问题转化成在\(n-1\)个空隙中选出\(k-1\)个空隙放挡板,形成的\(k\)个数的和正好就是\(n\)。
换句话说,我们要求\(C_{n-1}^{k-1}\)
对于样例的画图辅助理解

代码

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇