[NOI2012]随机数生成器

题目链接

题目描述

栋栋最近迷上了随机算法,而随机数是生成随机算法的基础。栋栋准备使用线性同余法(Linear Congruential Method)来生成一个随机数列,这种方法需要设置四个非负整数参数m,a,c,X[0],按照下面的公式生成出一系列随机数{Xn}
X[n+1]=(aX[n]+c)\ mod\ m
其中mod m表示前面的数除以m的余数。从这个式子可以看出,这个序列的下一个数总是由上一个数生成的。

用这种方法生成的序列具有随机序列的性质,因此这种方法被广泛地使用,包括常用的C++Pascal的产生随机数的库函数使用的也是这种方法。

栋栋知道这样产生的序列具有良好的随机性,不过心急的他仍然想尽快知道X[n]是多少。由于栋栋需要的随机数是0,1,...,g-1之间的,他需要将X[n]除以g取余得到他想要的数,即X[n] mod\ g,你只需要告诉栋栋他想要的数X[n] mod\ g是多少就可以了。

输入格式

输入包含6个用空格分割的整数m,a,c,X[0],ng,其中a,c,X[0]是非负整数,m,n,g是正整数。

输出格式

输出一个数,即X[n] mod\ g

输入样例

输出样例

说明

计算得X[n]=X[5]=8,故(X[n] mod g) = (8 mod 3) = 2

100%的数据中n,m,a,c,X[0]<=10^{18},g<=10^8

题解

其实挺简单的……B君讲的时候居然没听懂
在草稿纸上写一写
x[1]=(ax[0]+c)(mod\ m)
x[2]=a((ax[0]+c)+c)=a^2x[0]+ac+c(mod\ m)
x[3]=a(a^2x[0]+ac+c)+c=a^3x[0]+a^2c+ac+c(mod\ m)
蛮好,这样就可以推出:
x[n]=a^nx[0]+a^{n-1}c+\cdots+ac+c
第一项快速幂算出即可,后面n项为等比数列,递归求出即可,由于会爆long long,乘法用龟速乘代替即可

代码

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇